Finding Influential Institutions in Bibliographic Information Networks

نویسندگان

  • Anubhav Gupta
  • M. Narasimha Murty
چکیده

Ranking in bibliographic information networks is a widely studied problem due to its many applications such as advertisement industry, funding, search engines, etc. Most of the existing works on ranking in bibliographic information network are based on ranking of research papers and their authors. But the bibliographic information network can be used for solving other important problems as well. The KDD Cup 2016 competition considers one such problem, which is to measure the impact of research institutions, i.e. to perform ranking of research institutions. The competition took place in three phases. In this paper, we discuss our solutions for ranking institutions in each phase. We participated under team name “anu@TASL”and our solutions achieved the average NDCG@20 score of 0.7483, ranking in eleventh place in the contest.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the Impact of Authors’ Rank in Bibliographic Networks on Expertise Retrieval

Background and Aim: this research investigates the impact of authors’ rank in Bibliographic networks on document-centered model of Expertise Retrieval. Its purpose is to find out what kind of authors’ ranking in bibliographic networks can improve the performance of document-centered model.   Methodology: Current research is an experimental one. To operationalize research goals, a new test colle...

متن کامل

Bibliometric Networks on Analyze Flipped Learning Research

Aim: The purpose is to provide a comprehensive overview of the current state of research in the field of flipped learning and classroom. It is a science metrics attempt to extract and analyze bibliographic networks based on the international scientific indexing (ISI) Methodology: Systematic search technique was applied: A set of scientific productions indexed in the field of flipped learning an...

متن کامل

finding influential individual in Social Network graphs using CSCS algorithm and shapley value in game theory

In recent years, the social networks analysis gains great deal of attention. Social networks have various applications in different areas namely predicting disease epidemic, search engines and viral advertisements. A key property of social networks is that interpersonal relationships can influence the decisions that they make. Finding the most influential nodes is important in social networks b...

متن کامل

A Knowledge Management Approach to Discovering Influential Users in Social Media

A key step for success of marketer is to discover influential users who diffuse information and their followers have interest to this information and increase to diffuse information on social media. They can reduce the cost of advertising, increase sales and maximize diffusion of information.  A key problem is how to precisely identify the most influential users on social networks. In this pape...

متن کامل

Finding influential spreaders from human activity beyond network location

Most centralities proposed for identifying influential spreaders on social networks to either spread a message or to stop an epidemic require the full topological information of the network on which spreading occurs. In practice, however, collecting all connections between agents in social networks can be hardly achieved. As a result, such metrics could be difficult to apply to real social netw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1612.08644  شماره 

صفحات  -

تاریخ انتشار 2016